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Note 

The Numerov Method and Singular Potentials 

In a recent homonym paper [ 11, Buendia and Guardiola examined the accuracy 
of the Numerov method for the solution of the radial Schrodinger equation (SE) 
y” = (V(x) -E) y in the case when the potential is singular at the origin. They 
considered potentials of the form 

V(x) = Z(Z+ 1)/X’+ a(x)/x+/?(x), (1) 

where a(x) and p(x) are well-behaved functions and I is some nonnegative integer. 
We are interested in the eigenvalue problem as solved in a shooting process with 
backwards integration at each trial value of the energy. 

Briefly, a step size h is introduced and the points x, = nh, n = 0, 1, 2,..., N, are 
used in the numerical procedure. The Numerov algorithm 

Y n+ 1- 2Yn + Yn- I = W(Y::+ I + 1OYi + y::- I) (2) 

in which y,“=(V,-I?)yi, i=n-1, n, n+l, yieldsy,,_, in terms of FJ’,~-,, V,,, 
V n + r, yn, y, + I , and E. On imposing some suitable values for yN andy hi ~ 1 in terms 
of the known asymptotic behavior of the solution, algorithm (2) is applied suc- 
cessively at y1= N- 1, N - 2,..., 1, and the calculation of the eigenenergy means 
finding that value of E at which y is regular at the origin or, equivalently, y, = 0. 

The difficulty is that, when the potential is singular at the origin, the application 
of Eq. (2) at II = 1 is impossible because yi involves V(0) which is infinite. The 
authors of [ 1 ] derived an approximation to y0 which avoids the appearance of yi. 
They arrived at the representation y0 N D, where 

D = - 2y, + y, - A h2( 13yI’ - 2~4’ + y;) (3) 

is an easily computable expression which permits the localization of the eigenenergy 
as the value of E at which D = 0. The standard finite differences technique was used 
in [l] to derive Eq. (3) but an alternative, more systematic procedure exists and 
this is as follows. 

We introduce the three-point functional 

~[y]=a,y(h)+a,y(2h)+a,y(3h)-h2(b,y”(h)+6,y”(2h)+b,~~“(3h)) (4) 
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and search for the weights a, and h, such as F[y] = 0 for some preset forms of y. If 
we take y = xm we have F[ y] = k”F,,, with 

Now, if we set F,,, = 0 for five different values for earl we get a system of five 
equations for six unknowns which, because each equation is homogeneous, admits 
a unique solution provided one unknown is taken as a free parameter. This is, 
however, the maximal possibility; we can fix ab initio some more weights 1 < p < 6 
and determine the remaining 6 - p weights from the equal number of equations. In 
particular, if we choose p = 2, a, = - 2, a3 = 0, and take m = 1,2, 3, and 4, we get 
a2 = 1, b, = g, b, = - 4 and b, = &, i.e., exactly the weights of D. Likewise, if we set 
p = 3, a, = - 2, a3 = b3 = 0, and m = 1, 2, and 3, the resultant three weights are a, = 
h l = I and 6, = 0. so that the expression 

s= -2y,+y&z*y; (6) 

is another possible candidate for being used in the search for eigenenergies. 
This way of generating the weights raises the question of finding the most 

suitable values of m to describe the regular solution of SE. We start from the 
known fact that in the vicinity of the origin the regular solution is Y(X) = .xf+ ’ Y(X), 
where Y(x) is a function which can be represented by the power series Ylx9 = 
Y,+ Y,x+ Y,x’+ ..(. It follows that the maximal achievement of Eq. (4) is 
reached if p = 1 and 

m=I+1,1+2,1+3,1+4,andI+5. (7) 

The resultant system of equations admits, if we take ~1~ = 1 as an ab initio deter- 
mination. the solution 

U, = AJQ, i= 2, 3, 6, = B,/Q, i = 1,2,3 

with 

.42=2-(‘+1)(414+2813-12-217Z+240), B,=21’i151-5. 

A3=3~t’+2’(214+4113+23212+3011-540). B, = 2’.-‘(412 + 241- 25) (9) 

Q = 2i4 + 513 - 681= + 851- 60, B,=3-“+C’)(612+91-15). 

We thus conclude that the expression 

P = y1 + a7 y2 + a3 y, - h=(b, y; + b, y; + 6, y;) (10) 

with the l-dependent weights just determined represents the optimal three-point for- 
muia for checking whether the solution is regular and, in particular, for calculating 
the eigenenergies. 
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The case I= 0 requires some special attention. Here the weights are a, = a3 = 1, 
a2 = - 2, b, = b, = & and b, = 2, i.e., just the weights of the Numerov method and 
then P becomes senseless. Technically the reason is that in this case it happens that 
Fnz =0 also when m =O, a value which does not belong to the set (7). A way to 
overcome this difficulty consists of taking two weights as fixed and evaluating the 
other four weights from the system with m = 1,2, 3,4, which is exactly the way 
Eq. (3) was derived. In other words, D remains the optimal expression when I= 0 
but P is better for I> 0. 

The error in the eigenvalues localized by the expressions S, D, and P behaves as 
h’+4 for I= 1 2 3 and h*‘+’ for 1>3, as h'+' for I= 1,2, 3,4 and h*‘+’ for 1>4, 
and as h2’f6 for’all I3 1, respectively. Since the systematic proof of this statement is 
rather long we give only a check in the case of S and for I = 1 and I = 4. 

In general, the solution of SE is a linear combination of the regular and irregular 
solutions, 

y”““(x) = y(x) + C(E) z(x), 

and the localization of the eigenenergy essentially means finding the value E* of E 
at which C(E*) = 0. The irregular solution is of the form z(x) = x-‘Z(X), where 
Z(x) admits a power series representation Z(x)=Z,+ 2,x+ Z,x’+ ... and then 

y”““(x) = C(E)(Z,x-‘+ 2,x-‘+’ + ... + Z2p’) 

+(C(E)Z,,+,+ Y,)x’+‘+(C(E)Z~~+~+ Y,)x’+*+ . . . . 

Accounting for that for S we have F, = F2 = F3 = 0 and taking I = 1, functional (4) 
reads 

9[yy”““]=h-‘[C(E)(Z,F~,+Z,F,,h+Z5Fz,h5)+ Y,F,h5+O(h6)]. 

This vanishes at E such that 

C(E)= -F4Y3h5/(Z&, +Z,F,h+Z,F,h5)+O(h6)-O(h5) 

and, if A is the deviation of the computed E from the exact E*, A = E* - i?, we may 
write C(E*) - C(E) = A. C’(E*) and thus A N - C(E)/C’(E*) N O(h’). Likewise, 
when I = 4 it results that 

C(E)= -F5Y0h9/(Z0F_4+ZIF;-3h+ ... +Z,F,,h4+Z8F,h8+Z9F,h9)+O(h’o) 

and thus A N O(h9). The check is completed. 
The afore-mentioned behavior of the error in eigenvalues implies that real dif- 

ferences should appear in practice only if the numerical method used to generate 
yi, y,, and y, is of sufficiently high order. 

If, for instance, this is the fourth-order method of Numerov, yi, y2, and y3 are 
falsified by contributions proportional to h4 and this swallows the difference 
between the accuracies of S, D, and P for any I= 1, 2, 3,.... It follows that the plot 
logId/ vs. log h has, in the limit of small h, the form of one and the same straight 
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Frc;. I. Plot of the logarithm of the absolute error of the ergenvalue as a function of the logarithm of 
the step size for the harmonic oscillator (HO) and for the Coulomb (C) potential. The dot-and-dash, 
dashed, and solid lines correspond respectively to the expressions S. D, and P for the localization of the 
eigenenergy. When the vertical scales are different that on the left (right) refers to HO (C). 
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line of slope four for all three expressions. If the intergration method is of higher 
order, say, six, the slope is expected to be five for 5’ and six for D and for P when 
I = 1, and six for all S, D, and P when 12 2. Some shift between the lines of the 
same slope may also occur when the order of one expression equals that of the 
integration method as is the case when we compare S and P for a sixth-order 
method and I= 2. 

All these predictions are fairly well confirmed experimentally and for illustration 
we have chosen the harmonic oscillator (HO) V(x) =x2 + Z(l+ 1)/x2 and the 
Coulomb (C) potential V(x) = -2/x + 1(Z+ l)/ x2, also considered in [l]. The exact 
eigenenergies are E* = 2Z+ 3 for HO and E* = - l/(1 + 1)” for C. Figure 1 shows 
logId vs. log h when the integration method is Numerov and Henrici. The latter is 
a four step method of the sixth order with the algorithm 

see [2, Eq. (6-76)]. To start the intergration we have used xN= 10 for HO and 
x,,, = 150 for C, and WKB estimates as starting values. The cusps indicate the sign 
changes in A. We see that only the P curves are free of cusps and this is indeed a 
significant advantage in current applications. 
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